Baccalauréat STL

BACCALAURÉAT TECHNOLOGIQUE

Série : Sciences et Technologies de Laboratoire

- « Biotechnologies »ou
- « Sciences physiques et chimiques en laboratoire »

SESSION 2021

Épreuve écrite commune de contrôle continue

Biochimie -Biologie

Classe de première

Ce sujet est prévu pour être traité en deux heures.

L'usage de la calculatrice est interdit.

Ce sujet comporte 7 pages et 2 parties

Compétences évaluées					
C1	C2	C3	C4	C5	C6
Analyser un document scientifique ou technologique	Interpréter des données de biochimie ou de biologie	Argumenter un choix - Faire preuve d'esprit critique	Développer un raisonnement scientifique construit et rigoureux	Élaborer une synthèse sous forme de schéma ou d'un texte rédigé	Communiquer à l'aide d'une syntaxe claire et d'un vocabulaire scientifique adapté
5	5	3	3	2	2

LA MUCOVISCIDOSE

L'objectif de ce sujet est d'étudier l'origine génétique de la mucoviscidose et d'explorer le fonctionnement d'un médicament permettant de résoudre certains troubles digestifs chez une jeune patiente.

La mucoviscidose qui touche Axelle, 5 ans, est une pathologie engendrée par la mutation du gène CFTR. La conséquence de cette mutation sur la protéine pour laquelle il code (un canal membranaire perméable aux ions chlorure) est une augmentation de la viscosité du mucus et son accumulation dans les voies respiratoires et digestives essentiellement. Les troubles digestifs sont responsables de carences chez les patients ainsi qu'un retard de croissance important. Il existe des traitements médicamenteux tels que le Créon® qui permettent de résoudre en partie ces dysfonctionnements.

1- L'origine génétique de la mucoviscidose

Q1. (C1) Les séquences d'ADN ci-dessous sont extraites de l'allèle non muté et de l'allèle muté du gène CFTR. Identifier la mutation.

Séquence non mutée	3'-TAGTAGAAACCACAA-5' 5'-ATCATCTTTGGTGTT-3'
Séquence mutée	3'-TAGTAACCACAA-5'
F508del	5'-ATCATTGGTGTT-3'

- Q2. (C4) Transcrire puis traduire les séquences non mutée et mutée de ces allèles à l'aide du document 1. En déduire la conséquence de la mutation pour la protéine synthétisée.
- Q3. (C3) Démontrer que l'allèle responsable de la maladie est récessif à l'aide du document 2.
- **Q4.** (C4) Établir, à l'aide d'un échiquier de croisement, la probabilité que les parents d'Axelle aient un enfant atteint de mucoviscidose à chaque nouvelle grossesse.

2- Les troubles digestifs d'Axelle

Au niveau digestif, la mucoviscidose se caractérise par des douleurs abdominales particulièrement marquées après les repas ainsi que des selles liquides (diarrhée) abondantes particulièrement riches en lipides non digérés par le patient (stéatorrhée). Le document 3 présente la mesure de la stéatorrhée chez deux enfants.

Q5. (C2) Interpréter les données du document 3 afin d'expliquer lequel des deux enfants a le plus de lipides dans ses selles.

Le document 4 présente une réaction chimique qui a lieu lors de la digestion des lipides.

Q6. (C1) Nommer les molécules A et B. Repérer la fonction chimique acide carboxylique et la recopier sur la copie.

Q7. (**C3**) Déterminer le sens d'évolution du pH au cours de la réaction d'hydrolyse d'un triglycéride à l'appui d'une argumentation.

Un médicament, le Créon® est administré aux patients en vue de diminuer les troubles digestifs. Le document 5 présente des expériences visant à mettre en évidence le principe d'action du Créon®.

Q8. (C2) Analyser les expériences pour en déduire l'action du Créon[®] sur les triglycérides.

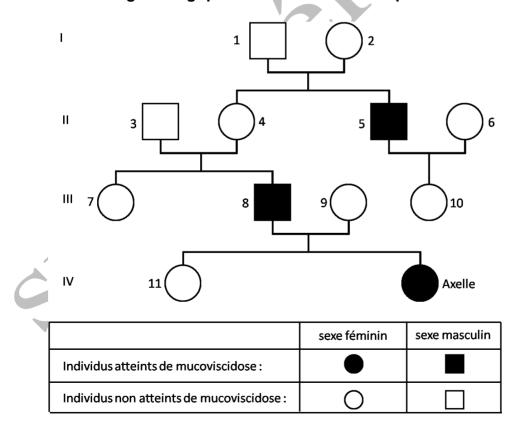
Le Créon[®] remplace l'action du suc digestif devenu trop visqueux pour sortir des canaux pancréatiques en direction de la lumière intestinale.

- **Q9.** (**C1**) À partir du document 6 qui présente la composition du Créon[®], identifier les biomolécules qui remplacent l'action du suc digestif pancréatique.
- Q10. (C1) Compléter les schémas du document 7 avec les légendes choisies dans la liste fournie. Sur ce document, à rendre avec la copie, indiquer le lieu majeur de la digestion des lipides et représenter le trajet du suc pancréatique.

Le pH de l'estomac varie entre 2 et 4 au cours de la journée et celui du duodénum oscille entre 6 et 8. Le document 8 illustre l'effet du pH sur l'activité de différentes enzymes impliquées dans la digestion. Toutes ces enzymes sont de nature protéique ou glycoprotéique. Seule une faible partie de la digestion des lipides (10 à 30 %) se fait dans l'estomac grâce à l'action de la lipase gastrique.

- **Q11**. (**C2**) À l'aide des documents 6 et 8, expliquer l'intérêt de la gastrorésistance des gélules de Créon[®] pour que le traitement soit efficace.
- **Q12.** (**C3**) En lien avec les propriétés des enzymes, proposer une hypothèse sur le devenir moléculaire des substances actives contenues dans la gélule de Créon[®] dans le cas où la gélule ne serait pas gastrorésistante.

3- Synthèse


- Q13. (C5)Elaborer un logigramme permettant de présenter synthétiquement :
 - les conséquences de la mutation F508del sur les troubles digestifs d'Axelle ;
 - le rôle du Créon[®].

Document 1 : le code génétique

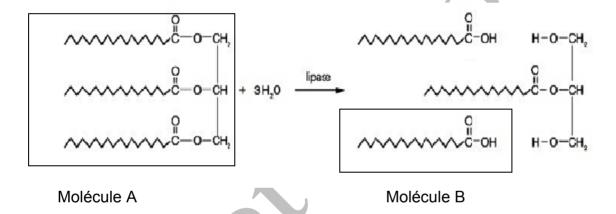
	U			С		Α	G		
U	UUU UUC	phénylalanine	UCU UCC	sérine	UAU	tyrosine	UGU UGC	cystéine	U C
١	UUA	leucine	UCA	Serine	UAA	stop	UGA	stop	A
	UUG	leucille	UCG		UAG	stop	UGG	tryptophane	G
	CUU		CCU		CAU		CGU		U
c	cuc	leucine	ccc	proline	CAC	histidine	CGC	arginine	С
	CUA	leucine	CCA		CAA		CGA		A
	CUG	20	ccg		CAG	glutamine	CGG		G
	AUU		ACU		AAU	asparagine	AGU	sérine	U
A	AUC	isoleucine	ACC	thréonine	AAC	asparagine	AGC	serille	С
^	AUA		ACA	tilleonille	AAA	lysine	AGA	arginine	A
	AUG	méthionine	ACG		AAG	Tysine	AGG	arginine	G
	GUU		GCU		GAU	acide	GGU		U
G	GUC	valine	GCC	alanine	GAC	aspartique	GGC	alveine	С
"	GUA	vailne	GCA	alanine	GAA	acide	GGA	glycine	A
	GUG		GCG		GAG	glutamique	GGG		G

http://ressources.unisciel.fr

Document 2 : arbre généalogique de la famille touchée par la mucoviscidose

Document 3 : évaluation de la stéatorrhée chez Axelle et un enfant non atteint de mucoviscidose

La stéatorrhée est la présence de lipides en trop grande quantité dans les selles. L'évaluation de la stéatorrhée consiste en la mesure de la quantité moyenne de lipides fécaux en grammes par 24 heures au cours d'un recueil de selles réalisé pendant au moins 3 jours consécutifs.


On évalue ensuite le coefficient d'absorption des lipides noté CA.

CA= ((lipides ingérés-lipides excrétés)/lipides ingérées) x 100

Un CA inférieur à 90% est considéré comme pathologique.

Résultats obtenus chez Axelle et chez un enfant non atteint de mucoviscidose				
CA _{Axelle}	60%	0		
CA enfant non atteint	96%			

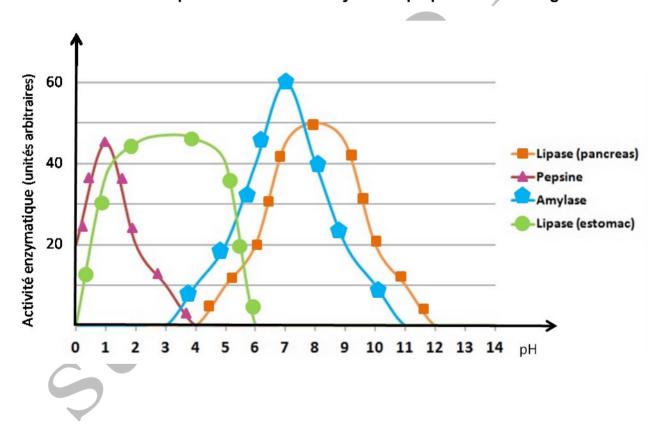
Document 4 : équation d'hydrolyse enzymatique des triglycérides

Document 5 : expériences réalisées avec le Créon®

tube	huile de tournesol	solution de Créon [®]	eau distillée	soude	incubation	thymolphtaléine	couleur de la solution
N°1	3 mL	1	3 mL	qsp* pH 11	6 heures à température	quelques gouttes	bleue
N°2	3 mL	3 mL	-	qsp* pH 11	ambiante	quelques gouttes	incolore

qsp*: quantité suffisante pour ...

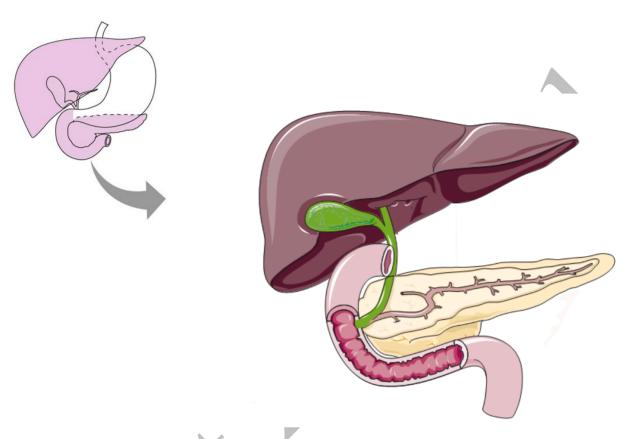
La thymolphtaléine est un indicateur coloré de pH:


- zone de virage entre pH 9,3 et pH 10,5
- couleur bleue en milieu basique
- incolore en milieu acide

Document 6 : composition du médicament Créon®

principe actif	dose unitaire d'une gélule gastrorésistante*		
pancréatine	150 mg		

- Substance active : la pancréatine désigne l'ensemble des enzymes dans lequel on trouve de nombreuses lipases.
- Excipients et enrobage : alcool cétylique, diméticone 1000, hypromellose phtalate, macrogol 4000, Triéthyle citrate.
- * Gélule **gastrorésistante** = seul un pH neutre permettra la dissolution de l'enrobage de la gélule, insoluble à pH acide.


Document 8 : effet du pH sur l'activité d'enzymes impliquées dans la digestion

A RENDRE AVEC LA COPIE

N° candidat :

Document 7 : zoom sur une zone de l'appareil digestif

Source : à partir de https://smart.servier.com/

Pour annoter ces deux schémas une liste de noms est proposée. Ils ne sont pas tous à retenir :

Canal cholédoque

Canal pancréatique

Côlon

Duodénum

Estomac

Foie

Intestin grêle

Œsophage

Pancréas

Rectum

Vésicule biliaire